
Unit 4
DBMS

BTCS 501-18

Introduction to Transaction Processing

1 Introduction to Transaction Processing

2 Transaction and System Concepts

3 Desirable Properties of Transactions

4 Characterizing Schedules based on Recoverability

5 Characterizing Schedules based on Serializability

6 Transaction Support in SQL

Introduction to Transaction Processing

• Transaction: An executing program (process) that
includes one or more database access operations
– Read operations (database retrieval, such as SQL SELECT)

– Write operations (modify database, such as SQL INSERT, UPDATE,
DELETE)

– Transaction: A logical unit of database processing

– Example: Bank balance transfer of $100 dollars from a checking
account to a saving account in a BANK database

• Note: Each execution of a program is a distinct transaction with
different parameters

– Bank transfer program parameters: savings account number,
checking account number, transfer amount

Introduction to Transaction Processing (cont.)

• A transaction (set of operations) may be:

– stand-alone, specified in a high level language like SQL
submitted interactively, or

– consist of database operations embedded within a
program (most transactions)

• Transaction boundaries: Begin and End transaction.

– Note: An application program may contain several
transactions separated by Begin and End transaction
boundaries

Introduction to Transaction Processing (cont.)

• Transaction Processing Systems: Large multi-user
database systems supporting thousands of
concurrent transactions (user processes) per
minute

• Two Modes of Concurrency
– Interleaved processing: concurrent execution of

processes is interleaved in a single CPU

– Parallel processing: processes are concurrently
executed in multiple CPUs (Figure 21.1)

– Basic transaction processing theory assumes
interleaved concurrency

Introduction to Transaction Processing (cont.)

For transaction processing purposes, a simple
database model is used:

• A database - collection of named data items

• Granularity (size) of a data item - a field (data item
value), a record, or a whole disk block

• TP concepts are independent of granularity

• Basic operations on an item X:
– read_item(X): Reads a database item named X

into a program variable. To simplify our notation,
we assume that the program variable is also
named X.

– write_item(X): Writes the value of program
variable X into the database item named X.

Introduction to Transaction Processing (cont.)

READ AND WRITE OPERATIONS:

⚫ Basic unit of data transfer from the disk to the
computer main memory is one disk block (or page).
A data item X (what is read or written) will usually
be the field of some record in the database,
although it may be a larger unit such as a whole
record or even a whole block.

⚫ read_item(X) command includes the following
steps:

• Find the address of the disk block that contains item X.

• Copy that disk block into a buffer in main memory (if that
disk block is not already in some main memory buffer).

• Copy item X from the buffer to the program variable named X.

READ AND WRITE OPERATIONS (cont.):
⚫ write_item(X) command includes the following

steps:

• Find the address of the disk block that contains
item X.

• Copy that disk block into a buffer in main memory
(if it is not already in some main memory buffer).

• Copy item X from the program variable named X
into its correct location in the buffer.

• Store the updated block from the buffer back to
disk (either immediately or at some later point in
time).

Introduction to Transaction Processing (cont.)

• Figure 21.2 (next slide) shows two examples of
transactions

• Notation focuses on the read and write operations

• Can also write in shorthand notation:

– T1: b1; r1(X); w1(X); r1(Y); w1(Y); e1;

– T2: b2; r2(Y); w2(Y); e2;

• bi and ei specify transaction boundaries (begin and
end)

• i specifies a unique transaction identifier (TId)

Transaction Notation

Without Concurrency Control, problems may occur
with concurrent transactions:

• Lost Update Problem.

Occurs when two transactions update the same data
item, but both read the same original value before
update (Figure 21.3(a), next slide)

• The Temporary Update (or Dirty Read) Problem.

This occurs when one transaction T1 updates a
database item X, which is accessed (read) by another
transaction T2; then T1 fails for some reason (Figure
21.3(b)); X was (read) by T2 before its value is
changed back (rolled back or UNDONE) after T1 fails

Why we need concurrency control

• The Incorrect Summary Problem .

One transaction is calculating an aggregate summary
function on a number of records (for example, sum
(total) of all bank account balances) while other
transactions are updating some of these records (for
example, transferring a large amount between two
accounts, see Figure 21.3(c)); the aggregate function
may read some values before they are updated and
others after they are updated.

Why we need concurrency control (cont.)

• The Unrepeatable Read Problem .

A transaction T1 may read an item (say, available
seats on a flight); later, T1 may read the same item
again and get a different value because another
transaction T2 has updated the item (reserved seats
on the flight) between the two reads by T1

Why we need concurrency control (cont.)

Causes of transaction failure:
1. A computer failure (system crash): A hardware or

software error occurs during transaction execution. If
the hardware crashes, the contents of the computer’s
internal main memory may be lost.

2. A transaction or system error : Some operation in the
transaction may cause it to fail, such as integer overflow
or division by zero. Transaction failure may also occur
because of erroneous parameter values or because of a
logical programming error. In addition, the user may
interrupt the transaction during its execution.

Why recovery is needed

3. Local errors or exception conditions detected by the
transaction:

- certain conditions necessitate cancellation of the
transaction. For example, data for the transaction may
not be found. A condition, such as insufficient account
balance in a banking database, may cause a
transaction, such as a fund withdrawal, to be canceled
- a programmed abort causes the transaction to fail.

4. Concurrency control enforcement: The concurrency
control method may decide to abort the transaction, to
be restarted later, because it violates serializability or
because several transactions are in a state of deadlock
(see Chapter 22).

Why recovery is needed (cont.)

5. Disk failure: Some disk blocks may lose their data
because of a read or write malfunction or because of a
disk read/write head crash. This kind of failure and
item 6 are more severe than items 1 through 4.

6. Physical problems and catastrophes: This refers to
an endless list of problems that includes power or air-
conditioning failure, fire, theft, sabotage, overwriting
disks or tapes by mistake, and mounting of a wrong
tape by the operator.

Why recovery is needed (cont.)

Transaction and System Concepts

A transaction is an atomic unit of work that is either
completed in its entirety or not done at all. A
transaction passes through several states (Figure 21.4,
similar to process states in operating systems).

Transaction states:
• Active state (executing read, write operations)
• Partially committed state (ended but waiting for

system checks to determine success or failure)
• Committed state (transaction succeeded)
• Failed state (transaction failed, must be rolled back)
• Terminated State (transaction leaves system)

Transaction and System Concepts (cont.)

DBMS Recovery Manager needs system to keep track of the
following operations (in the system log file):

• begin_transaction: Start of transaction execution.

• read or write: Read or write operations on the database
items that are executed as part of a transaction.

• end_transaction: Specifies end of read and write
transaction operations have ended. System may still have
to check whether the changes (writes) introduced by
transaction can be permanently applied to the database
(commit transaction); or whether the transaction has to be
rolled back (abort transaction) because it violates
concurrency control or for some other reason.

Transaction and System Concepts (cont.)

Recovery manager keeps track of the following operations
(cont.):

• commit_transaction: Signals successful end of
transaction; any changes (writes) executed by transaction
can be safely committed to the database and will not be
undone.

• abort_transaction (or rollback): Signals transaction has
ended unsuccessfully; any changes or effects that the
transaction may have applied to the database must be
undone.

Transaction and System Concepts (cont.)

System operations used during recovery (see Chapter
23):

• undo(X): Similar to rollback except that it
applies to a single write operation rather than to
a whole transaction.

• redo(X): This specifies that a write operation of a
committed transaction must be redone to ensure
that it has been applied permanently to the
database on disk.

Transaction and System Concepts (cont.)

The System Log File
• Is an append-only file to keep track of all operations of all

transactions in the order in which they occurred. This
information is needed during recovery from failures

• Log is kept on disk - not affected except for disk or
catastrophic failure

• As with other disk files, a log main memory buffer is kept
for holding the records being appended until the whole
buffer is appended to the end of the log file on disk

• Log is periodically backed up to archival storage (tape)
to guard against catastrophic failures

Transaction and System Concepts (cont.)

Types of records (entries) in log file:

• [start_transaction,T]: Records that transaction T has
started execution.

• [write_item,T,X,old_value,new_value]: T has changed
the value of item X from old_value to new_value.

• [read_item,T,X]: T has read the value of item X (not
needed in many cases).

• [end_transaction,T]: T has ended execution

• [commit,T]: T has completed successfully, and
committed.

• [abort,T]: T has been aborted.

Transaction and System Concepts (cont.)

The System Log (cont.):

⚫ protocols for recovery that avoid cascading
rollbacks do not require that read operations
be written to the system log; most recovery
protocols fall in this category (see Chapter 23)

⚫ strict protocols require simpler write entries
that do not include new_value (see Section
21.4).

Transaction and System Concepts (cont.)

Commit Point of a Transaction:
⚫ Definition: A transaction T reaches its commit point

when all its operations that access the database have
been executed successfully and the effect of all the
transaction operations on the database has been
recorded in the log file (on disk). The transaction is
then said to be committed.

Transaction and System Concepts (cont.)

Commit Point of a Transaction (cont.):
⚫ Log file buffers: Like database files on disk, whole disk blocks

must be read or written to main memory buffers.

⚫ For log file, the last disk block (or blocks) of the file will be in
main memory buffers to easily append log entries at end of file.

⚫ Force writing the log buffer: before a transaction reaches its
commit point, any main memory buffers of the log that have not
been written to disk yet must be copied to disk.

⚫ Called force-writing the log buffers before committing a
transaction.

⚫ Needed to ensure that any write operations by the transaction are
recorded in the log file on disk before the transaction commits

Desirable Properties of Transactions

Called ACID properties – Atomicity,
Consistency, Isolation, Durability:

• Atomicity: A transaction is an atomic unit of
processing; it is either performed in its entirety
or not performed at all.

• Consistency preservation: A correct execution
of the transaction must take the database from
one consistent state to another.

Desirable Properties of Transactions (cont.)

ACID properties (cont.):
• Isolation: Even though transactions are executing

concurrently, they should appear to be executed in
isolation – that is, their final effect should be as if each
transaction was executed in isolation from start to finish.

• Durability or permanency: Once a transaction is
committed, its changes (writes) applied to the database
must never be lost because of subsequent failure.

Desirable Properties of Transactions (cont.)

• Atomicity: Enforced by the recovery protocol.

• Consistency preservation: Specifies that each
transaction does a correct action on the database on its
own. Application programmers and DBMS constraint
enforcement are responsible for this.

• Isolation: Responsibility of the concurrency control
protocol.

• Durability or permanency: Enforced by the recovery
protocol.

Schedules of Transactions

• Transaction schedule (or history): When transactions are
executing concurrently in an interleaved fashion, the order of
execution of operations from the various transactions forms
what is known as a transaction schedule (or history).

• Figure 21.5 (next slide) shows 4 possible schedules (A, B, C, D)
of two transactions T1 and T2:

• Order of operations from top to bottom

• Each schedule includes same operations

• Different order of operations in each schedule

Schedules of Transactions (cont.)

• Schedules can also be displayed in more compact notation

• Order of operations from left to right

• Include only read (r) and write (w) operations, with
transaction id (1, 2, …) and item name (X, Y, …)

• Can also include other operations such as b (begin), e (end), c
(commit), a (abort)

• Schedules in Figure 21.5 would be displayed as follows:
• Schedule A: r1(X); w1(X); r1(Y); w1(Y); r2(X); w2(x);

• Schedule B: r2(X); w2(X); r1(X); w1(X); r1(Y); w1(Y);

• Schedule C: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);

• Schedule D: r1(X); w1(X); r2(X); w2(X); r1(Y); w1(Y);

Schedules of Transactions (cont.)

• Formal definition of a schedule (or history) S of n
transactions T1, T2, ..., Tn :

An ordering of all the operations of the transactions subject
to the constraint that, for each transaction Ti that participates
in S, the operations of Ti in S must appear in the same order
in which they occur in Ti.

Note: Operations from other transactions Tj can be interleaved
with the operations of Ti in S.

Schedules of Transactions (cont.)

• For n transactions T1, T2, ..., Tn, where each Ti has mi read
and write operations, the number of possible schedules is (! is
factorial function):

(m1 + m2 + … + mn)! / ((m1)! * (m2)! * … * (mn)!)

• Generally very large number of possible schedules

• Some schedules are easy to recover from after a failure, while
others are not

• Some schedules produce correct results, while others
produce incorrect results

• Rest of chapter characterizes schedules by classifying them
based on ease of recovery (recoverability) and correctness
(serializability)

Characterizing Schedules based on
Recoverability

Schedules classified into two main classes:
• Recoverable schedule: One where no committed

transaction needs to be rolled back (aborted).
A schedule S is recoverable if no transaction T in S commits
until all transactions T’ that have written an item that T reads
have committed.

• Non-recoverable schedule: A schedule where a
committed transaction may have to be rolled back during
recovery.
This violates Durability from ACID properties (a committed
transaction cannot be rolled back) and so non-recoverable
schedules should not be allowed.

Characterizing Schedules Based on
Recoverability (cont.)

• Example: Schedule A below is non-recoverable because T2
reads the value of X that was written by T1, but then T2
commits before T1 commits or aborts

• To make it recoverable, the commit of T2 (c2) must be
delayed until T1 either commits, or aborts (Schedule B)

• If T1 commits, T2 can commit

• If T1 aborts, T2 must also abort because it read a value that
was written by T1; this value must be undone (reset to its old
value) when T1 is aborted

• known as cascading rollback

• Schedule A: r1(X); w1(X); r2(X); w2(X); c2; r1(Y); w1(Y); c1 (or a1)

• Schedule B: r1(X); w1(X); r2(X); w2(X); r1(Y); w1(Y); c1 (or a1); ...

Characterizing Schedules based on
Recoverability (cont.)

Recoverable schedules can be further refined:

• Cascadeless schedule: A schedule in which a transaction
T2 cannot read an item X until the transaction T1 that last
wrote X has committed.

• The set of cascadeless schedules is a subset of the set of
recoverable schedules.

Schedules requiring cascaded rollback: A schedule in which
an uncommitted transaction T2 that read an item that was
written by a failed transaction T1 must be rolled back.

Characterizing Schedules Based on
Recoverability (cont.)

• Example: Schedule B below is not cascadeless because T2
reads the value of X that was written by T1 before T1
commits

• If T1 aborts (fails), T2 must also be aborted (rolled back)
resulting in cascading rollback

• To make it cascadeless, the r2(X) of T2 must be delayed until
T1 commits (or aborts and rolls back the value of X to its
previous value) – see Schedule C

• Schedule B: r1(X); w1(X); r2(X); w2(X); r1(Y); w1(Y); c1 (or a1);

• Schedule C: r1(X); w1(X); r1(Y); w1(Y); c1; r2(X); w2(X); ...

Characterizing Schedules based on
Recoverability (cont.)

Cascadeless schedules can be further refined:

• Strict schedule: A schedule in which a transaction T2 can
neither read nor write an item X until the transaction T1 that
last wrote X has committed.

• The set of strict schedules is a subset of the set of cascadeless
schedules.

• If blind writes are not allowed, all cascadeless schedules are
also strict

Blind write: A write operation w2(X) that is not preceded by a
read r2(X).

Characterizing Schedules Based on
Recoverability (cont.)

• Example: Schedule C below is cascadeless and also strict
(because it has no blind writes)

• Schedule D is cascadeless, but not strict (because of the blind
write w3(X), which writes the value of X before T1 commits)

• To make it strict, w3(X) must be delayed until after T1
commits – see Schedule E

• Schedule C: r1(X); w1(X); r1(Y); w1(Y); c1; r2(X); w2(X); …

• Schedule D: r1(X); w1(X); w3(X); r1(Y); w1(Y); c1; r2(X); w2(X); …

• Schedule E: r1(X); w1(X); r1(Y); w1(Y); c1; w3(X); r2(X); w2(X); …

Characterizing Schedules Based on
Recoverability (cont.)

Summary:
• Many schedules can exist for a set of transactions

• The set of all possible schedules can be partitioned into two
subsets: recoverable and non-recoverable

• A subset of the recoverable schedules are cascadeless

• If blind writes are allowed, a subset of the cascadeless
schedules are strict

• If blind writes are not allowed, the set of cascadeless
schedules is the same as the set of strict schedules

Characterizing Schedules based on
Serializability

• Among the large set of possible schedules, we want to
characterize which schedules are guaranteed to give a
correct result

• The consistency preservation property of the ACID
properties states that: each transaction if executed on its
own (from start to finish) will transform a consistent
state of the database into another consistent state

• Hence, each transaction is correct on its own

Characterizing Schedules based on
Serializability (cont.)

• Serial schedule: A schedule S is serial if, for every
transaction T participating in the schedule, all the
operations of T are executed consecutively (without
interleaving of operations from other transactions) in the
schedule. Otherwise, the schedule is called nonserial.

• Based on the consistency preservation property, any
serial schedule will produce a correct result (assuming no
inter-dependencies among different transactions)

Characterizing Schedules based on
Serializability (cont.)

• Serial schedules are not feasible for performance
reasons:

• No interleaving of operations

• Long transactions force other transactions to wait

• System cannot switch to other transaction when a
transaction is waiting for disk I/O or any other event

• Need to allow concurrency with interleaving without
sacrificing correctness

Characterizing Schedules based on
Serializability (cont.)

• Serializable schedule: A schedule S is serializable if it is
equivalent to some serial schedule of the same n
transactions.

• There are (n)! serial schedules for n transactions – a
serializable schedule can be equivalent to any of the
serial schedules

• Question: How do we define equivalence of schedules?

Equivalence of Schedules

• Result equivalent: Two schedules are called result
equivalent if they produce the same final state of the
database.

• Difficult to determine without analyzing the internal
operations of the transactions, which is not feasible in
general.

• May also get result equivalence by chance for a
particular input parameter even though schedules are
not equivalent in general (see Figure 21.6, next slide)

Equivalence of Schedules (cont.)

• Conflict equivalent: Two schedules are conflict
equivalent if the relative order of any two conflicting
operations is the same in both schedules.

• Commonly used definition of schedule equivalence

• Two operations are conflicting if:

• They access the same data item X

• They are from two different transactions

• At least one is a write operation

• Read-Write conflict example: r1(X) and w2(X)

• Write-write conflict example: w1(Y) and w2(Y)

Equivalence of Schedules (cont.)

• Changing the order of conflicting operations generally
causes a different outcome

• Example: changing r1(X); w2(X) to w2(X); r1(X) means
that T1 will read a different value for X

• Example: changing w1(Y); w2(Y) to w2(Y); w1(Y) means
that the final value for Y in the database can be different

• Note that read operations are not conflicting; changing
r1(Z); r2(Z) to r2(Z); r1(Z) does not change the outcome

Characterizing Scedules Based on
Serializability (cont.)

• Conflict equivalence of schedules is used to determine
which schedules are correct in general (serializable)

A schedule S is said to be serializable if it is conflict
equivalent to some serial schedule S’.

Characterizing Schedules based on
Serializability (cont.)

• A serializable schedule is considered to be correct
because it is equivalent to a serial schedule, and any
serial schedule is considered to be correct
– It will leave the database in a consistent state.

– The interleaving is appropriate and will result in a
state as if the transactions were serially executed, yet
will achieve efficiency due to concurrent execution
and interleaving of operations from different
transactions.

Characterizing Schedules based
on Serializability (cont.)

• Serializability is generally hard to check at run-time:
– Interleaving of operations is generally handled by the

operating system through the process scheduler

– Difficult to determine beforehand how the operations in a
schedule will be interleaved

– Transactions are continuously started and terminated

Characterizing Schedules Based on
Serializability (cont.)

Practical approach:

• Come up with methods (concurrency control
protocols) to ensure serializability (discussed in
Chapter 22)

• DBMS concurrency control subsystem will enforce the
protocol rules and thus guarantee serializability of
schedules

• Current approach used in most DBMSs:
– Use of locks with two phase locking (see Section 22.1)

Characterizing Schedules based on
Serializability (cont.)

Testing for conflict serializability

Algorithm 21.1:
• Looks at only r(X) and w(X) operations in a schedule

• Constructs a precedence graph (serialization graph) – one
node for each transaction, plus directed edges

• An edge is created from Ti to Tj if one of the operations in Ti
appears before a conflicting operation in Tj

• The schedule is serializable if and only if the precedence graph
has no cycles.

Characterizing Schedules based on
Serializability (cont.)

• View equivalence: A less restrictive definition of
equivalence of schedules than conflict serializability
when blind writes are allowed

• View serializability: definition of serializability based
on view equivalence. A schedule is view serializable if
it is view equivalent to a serial schedule.

Characterizing Schedules based
on Serializability (cont.)

Two schedules are said to be view equivalent if the following
three conditions hold:

• The same set of transactions participates in S and S’, and S
and S’ include the same operations of those transactions.

• For any operation Ri(X) of Ti in S, if the value of X read was
written by an operation Wj(X) of Tj (or if it is the original
value of X before the schedule started), the same condition
must hold for the value of X read by operation Ri(X) of Ti in
S’.

• If the operation Wk(Y) of Tk is the last operation to write
item Y in S, then Wk(Y) of Tk must also be the last operation
to write item Y in S’.

Characterizing Schedules based
on Serializability (cont.)

The premise behind view equivalence:

⚫ Each read operation of a transaction reads the result
of the same write operation in both schedules.

⚫ “The view”: the read operations are said to see the
the same view in both schedules.

⚫ The final write operation on each item is the same
on both schedules resulting in the same final
database state in case of blind writes

Characterizing Schedules based on
Serializability (cont.)

Relationship between view and conflict equivalence:

⚫ The two are same under constrained write
assumption (no blind writes allowed)

⚫ Conflict serializability is stricter than view
serializability when blind writes occur (a schedule
that is view serializable is not necessarily conflict
serialiable.

⚫ Any conflict serializable schedule is also view
serializable, but not vice versa.

Characterizing Schedules based on
Serializability (cont.)

Relationship between view and conflict equivalence
(cont):

Consider the following schedule of three transactions

T1: r1(X); w1(X); T2: w2(X); and T3: w3(X):

Schedule Sa: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sa, the operations w2(X) and w3(X) are blind writes, since T2
and T3 do not read the value of X.

Sa is view serializable, since it is view equivalent to the serial
schedule T1, T2, T3. However, Sa is not conflict serializable,
since it is not conflict equivalent to any serial schedule.

Characterizing Schedules based on
Serializability (cont.)

Other Types of Equivalence of Schedules

⚫ Under special semantic constraints, schedules that
are otherwise not conflict serializable may work
correctly

⚫ Using commutative operations of addition and
subtraction (which can be done in any order) certain
non-serializable transactions may work correctly;
known as debit-credit transactions

Characterizing Schedules based on
Serializability (cont.)

Other Types of Equivalence of Schedules (cont.)
Example: bank credit/debit transactions on a given item are

separable and commutative.
Consider the following schedule S for the two transactions:
Sh : r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);
Using conflict serializability, it is not serializable.
However, if it came from a (read,update, write) sequence as

follows:
r1(X); X := X – 10; w1(X); r2(Y); Y := Y – 20; w2(Y); r1(Y);
Y := Y + 10; w1(Y); r2(X); X := X + 20; w2(X);
Sequence explanation: debit, debit, credit, credit.
It is a correct schedule for the given semantics

Introduction to Transaction Support in
SQL

• A single SQL statement is always considered to be
atomic. Either the statement completes
execution without error or it fails and leaves the
database unchanged.

• With SQL, there is no explicit Begin Transaction
statement. Transaction initiation is done implicitly
when particular SQL statements are encountered.

• Every transaction must have an explicit end
statement, which is either a COMMIT or
ROLLBACK.

Introduction to Transaction Support in
SQL (cont.)

Characteristics specified by a SET TRANSACTION
statement in SQL:

⚫ Access mode: READ ONLY or READ WRITE. The default is
READ WRITE unless the isolation level of READ
UNCOMITTED is specified, in which case READ ONLY is
assumed.

⚫ Diagnostic size n, specifies an integer value n, indicating
the number of conditions that can be held
simultaneously in the diagnostic area. (To supply run-
time feedback information to calling program for SQL
statements executed in program)

Transaction Support in SQL (cont.)

Characteristics specified by a SET TRANSACTION
statement in SQL (cont.):

⚫ Isolation level <isolation>, where <isolation> can be
READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ or SERIALIZABLE. The default is SERIALIZABLE.

If all transactions is a schedule specify isolation
level SERIALIZABLE, the interleaved execution of
transactions will adhere to serializability. However,
if any transaction in the schedule executes at a
lower level, serializability may be violated.

Transaction Support in SQL (cont.)

Potential problem with lower isolation levels:
⚫ Dirty Read: Reading a value that was written by a

transaction that failed.

⚫ Nonrepeatable Read: Allowing another transaction to
write a new value between multiple reads of one
transaction.

A transaction T1 may read a given value from a table. If
another transaction T2 later updates that value and
then T1 reads that value again, T1 will see a different
value. Example: T1 reads the No. of seats on a flight.
Next, T2 updates that number (by reserving some seats).
If T1 reads the No. of seats again, it will see a different
value.

Transaction Support in SQL (cont.)

Potential problem with lower isolation levels
(cont.):

⚫ Phantoms: New row inserted after another transaction
accessing that row was started.

A transaction T1 may read a set of rows from a
table (say EMP), based on some condition specified
in the SQL WHERE clause (say DNO=5). Suppose a
transaction T2 inserts a new EMP row whose DNO
value is 5. T1 should see the new row (if equivalent
serial order is T2; T1) or not see it (if T1; T2). The
record that did not exist when T1 started is called a
phantom record.

Transaction Support in SQL2 (cont.)

Sample SQL transaction:
EXEC SQL whenever sqlerror go to UNDO;
EXEC SQL SET TRANSACTION

READ WRITE
DIAGNOSTICS SIZE 5
ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT
INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)
VALUES ('Robert','Smith','991004321',2,35000);

EXEC SQL UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1
WHERE DNO = 2;

EXEC SQL COMMIT;
GO TO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ...

Summary

⚫ Introduction to Transaction Processing

⚫ Transaction and System Concepts

⚫ Desirable Properties of Transactions (ACID
properties)

⚫ Characterizing Schedules based on
Recoverability

⚫ Characterizing Schedules based on
Serializability

⚫ Transaction Support in SQL

